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The purpose of this paper is to answer the following

questions: (l) Let F be a family of sets , What are neces-

sary and sufficient conditions tliat P be the family of all sets

represented in sorae consistent standard theory ? (2) VJhat are

necessary and sufficient conditions that F be the family of all

sets represented in sorae consistent axiomatizable standard theory?

I shall prove :

THEOREM 1, F is the family of all sets represented in some con-

sistent





represented in T, This result has been previously obtained by

Shoenfield (in a stronger form); and the result about Yl^ sets can

likewise be obtained by a quite different construction than the

one used here. However, it is of interest to see these results

not as isolated curiosities, but as special cases of very general

theoreras,

1, General ReiTiarks . |P, ,Fp,.,,j will be a family of sets

which contains the null set, the "universal" set Nn, and is closed

under intersection and finite addition and subtraction; P^, ?„,,,,

vfill be an infinite list of nonadic predicate letters; n will be

the nth forriial integer; T will be the theory v/hose axioms are

n ?^ m for each pair n,m such that n ^ m; P. (n) for each i,n such

that n e F.; and (x)(p. (x)/...j^P. (x).v. P (x)j^. . .j^P. (x)) for
1 ^1 ^K J-^ ^N

each pair rP. , , . . . ,P.T^f , -j P.,,..,, P. I of disjoint finite sets

(Iv = 1, N = 1) of predicate letters from the list P^jP^,... J

A^,Ap, ...A
f-

B will be used to mean (where n = 0) that there is

a proof of B from assiimptions A^jA^^, ...A^ in first order predicate

calculus with identity; and
f- ^3 will mean that B is a theorem

(valid sentence) of T,

2, Proofs . To prove Theorems 1 and 2 we need the following

lemmas

:

LEMMA 1: Let
\^i)'^-^>"'\

be the family of all sets represented in

some consistent standard theory S . Then P,,Fp, ... is closed under

intersection, finite addition, and finite subtraction, and contains

the null set and the universal set .

Proof; Closure under intersection is obvious, since if the w.f.f.
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(well formed formula) A(x) represents F. and E(x) represents P.,

then A(jO i B{x) represents F. (1 P-. The null set is represented

by any self contradictory w.f.f with one free variable; the

universal set is represented by any valid w.f.f. with one free

variable; and finally the sets P. U -jn,, np, ... ,n, ( and

P. - |n, ,np, . . , ,n/l are represented by the formulas

A(x) vx = n, V ... vx = ni^ and A(x) i :z ^ n, /. ../x 7^ n,

respectively.

LEMMA 2: P. represents F. in T.
X — 1 —

Proof: If n G P., then P.(n) is an axiom of T, and hence ["rpP-(n^).

Now suppose n € P., and consider the following interpretation of

T: for all m, m designates n; P. is assigned the universal set

as extension for j 7^ 1, and P. is assigned as its extension the

set Nn - t.n} • This interpretation is a true interpretation of T,

and according to it the sentence P.(n) is false. Hence P.(n) is

not a theorem of T.

LEim 3. If TrpP^ (x)/. ..;^P, (x) 13 A(x), where M = 0^ and A(x) is

a w.f.f. with one free variable, then A(x) represents one of the

P. in T.

Proof: (By co\irse-of-values induction on M. ) Suppose M = 0.

Then pir^^^^)* hence A(x) represents Nn,

Suppose the lemma holds for M < N, and let f mF. (x)j^. ../P. (x)
" ^1 ^N

^A(x). Let s-j^,S2,. . . ,Sj^ be all of the formal integers that

occur in A(x). If A(t) is never provable unless \^'2 . (t)j^. ..j^P, (t

)

^1 h\

or t € Is^^s^j . . . ,Sj^ V , then A(x) represents a set that can be

from P. Of. O ..,.n P. by finite addition, and hence
^1 ^Z ^w

obtained
i- 1^ 1

N





one of the F.. Now suppose that j-rpACt), where it is not the case

that hmP. (t)j^...j^P. ("t), and t ^ s, . Let the following be all

of the axioms needed for some proof of A(t) in T:

P. (t),. . .,P. (t )i t 7^ n, ,. . . ,t ?^ n.j A ,...,A i where the A are

all of the axioms not containing t used in the proof. If U = 0,

then, by the Deduction Theorem, k^y. . , ,k^Y\ ^ n^4...jit ^ n.^ACt);

hence, since t does not occur in A^ ,Ap, , , , ,Ao, and t is not one of

the s^, A^gA^,... ^A^\- (x)(x ^ n^j^.../x ^ n.O A(x)). Then

|-m(x)(x 7^ n, j^. ..j^x f^ n. 3 a(x)), and A(x) represents Nn - W,
J- -J- J

where W has to be a subset of fn, ,...,n.l , and hence finite. On

the other hand, if U ^ 0, then by a similar argxuiient

A-,A„,...,A^{- (x)(P. (x)^..,;^P, (x) rD (x 7^ n^;^. ..j^x /^ n. ::? A(x))),

and so F mP. (x)/^...j^P. (x) Z) (x j^ n,j^,..^x ^ n. -JA(x)). But vr

assiomed h m?.. (x)j^..,j^P. (x)^A(x), so
^ ^1 ^N

(1) t-m(P. (x);^,../P. (x) .V. p. (x)/...;EP, (x)) 3) (x j^ H,je^

1 ^N Jl ^U ^

,,,^x ^ n. 3 A(x)) .

J

If the P^'s and the P.'s are all distinct, then

|-m(x)(F. (x)j^...j^P. (x) .V. P. (x),^. ..;^P. (x)), and hence
^1 ^N ^1 ^W

^

[- rji(x 7^ n^^...^x ^ n.^ A(x)) and A(x) represents Nn - w, where

W is a finite set. And if tlie P.'s and the P.'s are not all

distinct, then P. (x)j^. ..P. (x).v.P, (x)j^. ../P, (x) is quanti-
^1 ^M "1 -^U

ficationally equivalent (in fact, equivalent by prepositional

calculus) to F (x)jef...^P, (x) ji ( ?, (::);^P, U)^...iV. /^.xCx)
*^1 ^H ^r ^r' ^v^^'

.V. P^. (x)^P^. (x);^.../P^. (Q)(x)), where P,^ , P^^ > " ' >\ ^^® ^^^
s s s 1 2 K
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of the P's that occur both among the P. and among the P., v;hile

p. ,F. ,P. ,.,.,P. /j^> are the P. that do not also occur among

^P ^r' ^r" ^r^^ ^

the P., and similarly P. ,P. ,P. ,..,,P. /q n are the P. that do
J Js -^s' '^s" -^s ^ '^

not also occur among the P., Moreover, D cannot = (otherv;lse

p rpP- (t )jEf. . .;^P. ("t), contrary to the choice of t), and we may
^ ^1 ^N

assurae that Q ?^ (since otherwise we would have U < N, and the

lemma would follovj by the Induction hypothesis ). Thus

(x)(P. (x)j^...j^P. /^^(x) .V. p. (x);^..,/P. (f.s{x)) is an axiom of
\ S^^^ Js

. ^s^^^

T, so tliat P. (x)/.../P. (x) ,v. P. (x)/. .,/^P (x) is provably
il ijj Jl Ju

equivalent to P, (x)j^, ,,;^P, (x), vihere 11 < rJ. Hence the leriima
^1 ^^H

follo^^Js by the induction hypothesis and the fact that since (1) is

a theorem of T, f ^P, (x);^. ..;^P, (x)^ (x ^ n^j^. ../ x /^ n, =? A(x)).

LEMfIA Ij.. The family of all sets represented in an a::iomati2able

theory is a recursively enumerable family of recursively enumerable

sets .

Proof: Let the w.f.fs of S (where S is any axiomatizable theory)

with one free variable be effectively listed as A^ (x) ,Ap(x) , , , , ,

The predicate P(i,n) = rifroA^j^i^) is a recursively enumerable

predicate (to verify this, assiiming, Church's Thesis, note tliat it

can be written in the form (Ex)Prf (x,n,i) , where Prf(x,n,i) is the

decidable, and hence recursive, predicate "x is the godel number

of a proof of the formula that results vjhen n is put for all oc-

curences of 'x» in A^(x)". Moreover, A.(x) represents fnjPd, n)j ,

or (f(i)j (cf. n. 5), where f(l) = sj(e,i) and e is a godel

number of P,





Proof of THEOREM 1 . By LEM^ 1, v;e have "only if". To prove

"if" (i.e., to shov; that tlie conditions given in the theorern are

sufficient) vje sliall shov; that if {Pt»^p*«»»1 satisfies the

conditions, then JF, ,Pp, . . ,"|- is the faraily of all sets represented

in T (where T is the theory mentioned in §1) •

By LEfHI/l 2, F. is repi-esented in T (for i = 1,2,,..). So it

suffices to show that for every w.f.f, A(x) of T, A(x) represents

one of the P.. Accordingly, let A(x) be a w.f.f. of T v;ith x as

its only free variable, and let s-, , Sp, . . . , s, be all the formal

Integers that occur in A(x). If j" nTA(t ) only vrhen t e is, , Sp, . . . ,s,"^,

then A(x) represents a finite set, and hence one of the P. (noting

that all finite sets can be obtained from the null set by finite

addition). Now suppose |~nTA(t) where t € is-, ,Sp,, , , ,s, <i , Let

the following be all of the axioms needed for some proof of A("t)

in T: P. (t ),..., P. (t); "t ^ n, ,, , , ,t 7^ n .; A.,,,.,,A^J v;here

the A. are all of the axioms not containing t used in the proof.

Then A ,A ... ,A r P. (~)/..,j^P. (T) 3 (t ?^ n-,j^. , ,;^ ?^ n, =) A(t))j

hence A, ,Ap,,..,A pP (x);^.,./P. (x) D (x = n^i^. ..j^x = n .3A(x)) j^ '^ S 1 "^ll '^

and hence P m^^- (x)j^.../P (x) D (x /^ n^4,..4x. = n. ^ A(x)), Then

by LEI#!1A 3, X 7^ jx.^c,»^y. ^ n.OA(;:) represents one of the P.,

and hence A(x) represents one of the P,(cf. n,7) .

Proof of THEOREM 2, The proof is siirdlar to the proof of THEOREM 1,

except that LEMMA, [j. must also be used for the "only if" part of the

theorem, and we i.iust note tliat what we have given for tliis case is

a recuj'sively enumerable set of axioms. The axlonatizability of T

(in the sense of recurs j.ve axiomat inability ) then follows by

Craig's Theorem,





FOOTNOTES

1) Terriinology : In this paper "set" r.ieans set of non-negative

integers, except xjhen there is indication to the contrary. A

formula P(x) (with one free variable x) is said to "represent" a

set S in a theory T if for all integers n, n g S if axad only if

?i'n) is a theoreiii of T (N.B.it is not required that P(n) should be

refutable in T i.e., that i^Pln) should be provable in T

;^rhen n £ S). The term "represent" coraes from Undecidable Theories ,

(n e S is an abbreviation for f^n £ S, )

2.) By a "standard theory" I mean a "theory is standard forraal-

ization" in the sense in which that terra is used in Undecidable

Theories , in vjhich there are terras (called formal integers in the

sequel), say 0, 1, 2, ... (which raay be interpreted as designating

0, 1, 2, ...) such that n ^ m is provable for all n,m such that

n ;^ m.

3) A theory in standard forraalization is called "axiomatizable"

in Undecidable Theorie s if the set of valid sentences in identical

with the set of first-order consequences of some recursive subset

(called the set of "axioms"). (Instead of "recursive" it would

be better to say "solvable", in the sense of Post, since strictly

speaking the recursiveness of a set of forraulas depends upon the

godel numbering employed, whereas ''solvability'' is defined directly

for sets of expressions in any finite alphabet.)

Ij.) A set B will be said to come from a set A by finite addition

(resp. finite subtraction ) if B = A. U W (resp. A - VJ) where VJ is

a finite set.
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$) Following Kleene, let | n v be the nth partial recursive ftmction

in the standard enumeration. (This notation is not to be confused

with the notation |n| ...^ > fo^ the set of all n satisfying the

condition ..., nor with the notation JA.. ,Ap,A_ , , . . 1 , for the set

consisting of A ,A2^,A^,*.. .) V/e shall identify each partial

recursive function with its domain, for the purpose of enuraerating

the recursively enuonerable sets: thus In i will alternatively be

thought of, where convenient, as "the nth recursively enumerable

set, in the standard enumeration." A family P is called a

"recursively enumerable family of recursively enumerable sets"

if the members of F are itCO)! , £t(l)l , ... , for some general

recursive function t,

6) If M = 0, the 3 is to be understood as deleted.

7) More precisely, it would follox^r from the induction hypothesis

that X ^ n-^...x ^ n.'3A(x) represents one of the F.i But

X ^ nnj^,..j^x ^ n. A(x) represents a superset with at most finitely

many more members than the set represented by A(x) (as is clear

from the fact that this formula can also be vjritten

X = n, V X = np V . . . v x = n. v A(;:) can be obtained from this

F. by finite subtraction. Kence A(x) also represents one of the

P. (since the F. are closed under finite subtraction),

8) S, (e,i) is a primitive recursive function x-jhose value for any

e,i) is a Godel number of -)x1p {±,x)\ , where P Is the eth Z-

place recursively eniiraerable predicate in the standard enumeration.

This function is constructed in Introduction to Metamathematics.
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